Polymorphism

* Polymorphism is an object-oriented concept that allows us to create
versatile software designs

Binding

* Consider the following method invocation:

* obj.dolt();

* At some point, this invocation is bound to the definition of the
method that it invokes

* If this binding occurred at compile time, then that line of code would
call the same method every time

* However, Java defers method binding until run time -- this is called
dynamic binding or late binding

Polymorphism

* The term polymorphism literally means "having many forms"

* A polymorphic reference is a variable that can refer to different types
of objects at different points in time

* The method called through a polymorphic reference can change from
one invocation to the next

 All object references in Java are potentially polymorphic

Example

public abstract class Animal { // class is abstract
private String name;

public Animal(String nm) { // constructor method
name=nm;

}

public String getName() { // regular method
return (name);

}

public abstract void speak(); // abstract method - note no {}

}

« Three subclasses (Cow, Dog and Snake) each having
their own speak() method.

Example - Late Method Binding

public class AnimalReference
{
public static void main(String args]) {
Animal ref; // set up var for Animal abstract class

Cow aCow = new Cow("Bossy"); // makes specific objects
Dog aDog = new Dog("Rover"); // from the subclasses
Snake aSnake = new Snake("Ernie");

// now reference each as an Animal
ref = aCow; ref.speak();
ref = aDog; ref.speak(); // resolve references in run-time
ref = aSnake; ref.speak();

}
}

Example - Array of Objects

public class AnimalArray
{
public static void main(String argsl]) {
Animal ref[] = new Animal[3]; // assign space for array

Cow aCow = new Cow("Bossy"); // makes specific objects
Dog aDog = new Dog("Rover");
Snake aSnake = new Snake("Earnie");

// now put them in an array
ref[0] = aCow; ref[1] = aDog; ref[2] = aSnake;

// now demo dynamic method binding
for (int x=0;x<3;++x) { ref[x].speak(); }

Casting Objects

Dog doggy = (Dog) ref[x]; //cast current instance to
// subclass
doggy.someDogOnlyMethod () ;

Casting an individual instance to its subclass form, one can refer to any
property or method

Inheritance and References

classC1{...}

class C2 extends C1{ ... }

classC3{... }

Clx; // x can store a reference to an object of C1 or

// an object of any subclass of C1.

// in some other place
C1 ol = new C1();
C2 02 = new C2();
C3 03 = new C3();

Inheritance and References (cont.)

classC1{...}
class C2 extends C1{... }
classC3{... }

C1 ol = new C1(); C2 02 = new C2(); C3 03 = new C3();

0l =02; Automatically saved (Widening Conversion)

02 =(C2) 01; We need explicit type casting (Narrowing Conversion)
if o1 holds C2 object, this is okay;

But, if o1 holds C1 object = run-time error

0l =03; ILLEGAL (There is no inheritance relation between C1 and C3)
0l =(C1) 03; ILLEGAL (There is no inheritance relation between C1 and C3)

Inheritance and References (cont.)

 Assigning a child reference to a parent reference is a widening
conversion, and it can be performed by simple assignment.

* 01 =02; ref = aCow;

 Assigning a parent reference to a child reference is a narrowing
conversion, and it must be done with an explicit type cast operation.
* 02 =(C2) o1;
* If that parent reference (01) does not point to a child object (02) = run-time
error

* Since Object class is the ancestor of all classes in Java, we can store
any type of reference in an Object reference variable

Inheritance and References (cont.)

classC1{...}
class C2 extends C1{... }

// in some other place
Clol=new CI(); C202=new C();
Object 03;

03 =o01; Automatically saved (Widening Conversion)

03 =02; Automatically saved (Widening Conversion)

References and Inheritance

* An object reference can refer to an object of any class related to it by
inheritance

* For example, if Holiday is the superclass of Christmas, then a Holiday
reference could be used to refer to a Christmas object

Holiday
A\ Holiday day;
day = new Christmas() ;

Christmas

References and Inheritance

* These type compatibility rules are just an extension of the is-a
relationship established by inheritance

* Assigning a Christmas object to a Holiday reference is fine because
Christmas is-a holiday

 Assigning a child object to a parent reference can be performed by
simple assignment

 Assigning an parent object to a child reference can be done also, but
must be done with a cast

 After all, Christmas is a holiday but not all holidays are Christmas

Polymorphism via Inheritance

* Now suppose the Holiday class has a method called celebrate, and
Christmas overrides it

* What method is invoked by the following?
day.celebrate();

* The type of the object being referenced, not the reference type,
determines which method is invoked

* If day refers to a Holiday object, it invokes the Holiday version of
celebrate; if it refers to a Christmas object, it invokes that version

Polymorphism via Inheritance

* Note that the compiler restricts invocations based on the type of
the reference

 So if Christmas had a method called getTree that Holiday didn't have,
the following would cause a compiler error:

day.getTree(); // compiler error

e Remember, the compiler doesn't "know" which type of holiday is
being referenced

e A cast can be used to allow the call:
* ((Christmas)day).getTree();

Quick Check

If MusicPlayer IS the parent of CDPlayer, are the
following assignments valid?

MusicPlayer mplayer = new CDPlayer() ;

CDPlayer cdplayer = new MusicPlayer() ;

Quick Check

If MusicPlayer IS the parent of CDPlayer, are the
following assignments valid?

MusicPlayer mplayer = new CDPlayer() ;

Yes, because a CDPlayer IS-aMusicPlayer

CDPlayer cdplayer = new MusicPlayer() ;

No, you'd have to use a cast (and you shouldn't
knowingly assign a super class object to a
subclass reference)

Polymorphism via Inheritance

* Consider the following class hierarchy:

StaffMember

AF

Volunteer

Employee

T

Executive

Hourly

Polymorphism via Inheritance

* Let's look at an example that pays a set of diverse employees using a
polymorphic method

* See Firm.java

 See Staff.java

* See StaffMember.java
* See Volunteer.java

* See Employee.java

* See Executive.java

* See Hourly.java

//**

// Firm.java Author: Lewis/Loftus

//

// Demonstrates polymorphism via inheritance.
//**

public class Firm

{

public static void main (String[] args)

{
Staff personnel = new Staff();

personnel .payday () ;

Output

Name: Sam

Address: 123 Main Line
Phone: 555-0469

Social Security Number:
Paid: 2923.07

Name: Carla

Address: 456 Off Line
Phone: 555-0101

Social Security Number:
Paid: 1246.15

Name: Woody
Address:
Phone: 555-0000

Social Security Number:
Paid: 1169.23

789 Off Rocker

123-45-6789

987-65-4321

010-20-3040

k %

Lo

in
ke %

Output (continued)

Name: Diane
Address:

Phone: 555-0690

Social Security Number:

Current hours: 40
Paid: 422.0

Name: Norm

Address: 987 Suds Blvd.
Phone: 555-8374

Thanks!

Name: Cliff

Address: 321 Duds Lane
Phone: 555-7282

Thanks!

678 Fifth Ave.

958-47-3625

//**

// Staff.java Author: Lewis/Loftus
//

// Represents the personnel staff of a particular business.
//**

public class Staff

{
private StaffMember[] stafflist;
/=== s
// Constructor: Sets up the list of staff members.
/=== = s
public Staff ()
{

stafflList = new StaffMember[6];

continue

continue

stafflist[0] = new Executive ("Sam", "123 Main Line",
"555-0469", "123-45-6789", 2423.07);

stafflList[1] = new Employee ("Carla", "456 Off Line",
"555-0101", "987-65-4321", 1246.15);

stafflList[2] = new Employee ("Woody", "789 Off Rocker",
"555-0000", "010-20-3040", 1169.23);

stafflList[3] = new Hourly ("Diane", "678 Fifth Ave.",
"555-0690", "958-47-3625", 10.55);

stafflList[4] = new Volunteer ("Norm", "987 Suds Blvd.",
"555-8374") ;

stafflList[5] = new Volunteer ("Cliff", "321 Duds Lane",
"555-7282") ;

((Executive) staffList[0]) .awardBonus (500.00) ;

((Hourly)staffList[3]) .addHours (40) ;
}

continue

continue

e
// Pays all staff members.
/[=== e
public void payday ()
{
double amount;
for (int count=0; count < stafflist.length; count++)
{
System.out.println (stafflist[count]) ;
amount = stafflist[count].pay(); // polymorphic
if (amount == 0.0)
System.out.println ("Thanks!");
else
System.out.println ("Paid: " + amount)
System.out.println ("--------------—---———————— - ") ;
}
}

//**

// StaffMember.java Author: Lewis/Loftus
//

// Represents a generic staff member.
//**

abstract public class StaffMember
{
protected String name;
protected String address;
protected String phone;

// Constructor: Sets up this staff member using the specified
// information.

public StaffMember (String eName, String eAddress, String ePhone)
{

name = eName;
address = eAddress;
phone = ePhone;

continue

continue

public String toString()
{

String result = "Name: " + name + "\n";
result += "Address: " + address + "\n";
result += "Phone: " + phone;

return result;

// Derived classes must define the pay method for each type of
// employee.

public abstract double pay() ;

//**

// Volunteer.java Author: Lewis/Loftus

//

// Represents a staff member that works as a volunteer.
//**

public class Volunteer extends StaffMember
{

// Constructor: Sets up this volunteer using the specified
// information.

public Volunteer (String eName, String eAddress, String ePhone)

{

super (eName, eAddress, ePhone);

public double pay ()
{

return 0.0;

//**

// Employee.java Author: Lewis/Loftus
//

// Represents a general paid employee.
//**

public class Employee extends StaffMember
{
protected String socialSecurityNumber;
protected double payRate;

// Constructor: Sets up this employee with the specified
// information.

public Employee (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

super (eName, eAddress, ePhone);
socialSecurityNumber = socSecNumber;

payRate = rate;

continue

continue

public String toString()
{

String result = super.toString();

result += "\nSocial Security Number: " + socialSecurityNumber;

return result;

/=== e
// Returns the pay rate for this employee.

/=== e
public double pay ()

{

return payRate;

}

//**

// Executive.java Author: Lewis/Loftus
//

// Represents an executive staff member, who can earn a bonus.
//**

public class Executive extends Employee
{

private double bonus;
// Constructor: Sets up this executive with the specified

// information.

public Executive (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

super (eName, eAddress, ePhone, socSecNumber, rate);

bonus = 0; // bonus has yet to be awarded

continue

continue

e e
// Awards the specified bonus to this executive.
et
public void awardBonus (double execBonus)
{

bonus = execBonus;
}
e

// Computes and returns the pay for an executive, which is the
// regular employee payment plus a one-time bonus.

public double pay ()
{
double payment = super.pay() + bonus;

bonus = 0;

return payment;

//**

// Hourly.java Author: Lewis/Loftus
//

// Represents an employee that gets paid by the hour.
//**

public class Hourly extends Employee
{

private int hoursWorked;

// Constructor: Sets up this hourly employee using the specified
// information.

public Hourly (String eName, String eAddress, String ePhone,
String socSecNumber, double rate)

super (eName, eAddress, ePhone, socSecNumber, rate);

hoursWorked = 0;

continue

continue
// Adds the specified number of hours to this employee's
// accumulated hours.
public void addHours (int moreHours)

{

hoursWorked += moreHours;

public double pay()

{
double payment = payRate * hoursWorked;
hoursWorked = 0;
return payment;

}

continue

continue

public String toString()

{
String result = super.toString();
result += "\nCurrent hours: " + hoursWorked;
return result;

}

Polymorphism via Interfaces

* Interfaces can be used to set up polymorphic references as well
* Suppose we declare an interface called Speaker as follows:

public interface Speaker

{
public void speak() ;

public void announce (String str);

Polymorphism via Interfaces

* An interface name can be used as the type of an object reference
variable:

Speaker current;

* The current reference can be used to point to any object of any class
that implements the Speaker interface

* The version of speak invoked by the following line depends on the
type of object that current is referencing:

current.speak();

Polymorphism via Interfaces

* Now suppose two classes, Philosopher and Dog, both implement the
Speaker interface, providing distinct versions of the speak method

* In the following code, the first call to speak invokes one version and
the second invokes another:

Speaker guest = new Philospher();
guest.speak();

guest = new Dog();

guest.speak();

Polymorphism via Interfaces

* As with class reference types, the compiler will restrict invocations
to methods in the interface

* For example, even if Philosopher also had a method called
pontificate, the following would still cause a compiler error:

Speaker special = new Philospher();
special.pontificate(); // compiler error

* Remember, the compiler bases its rulings on the type of the
reference

Quick Check

Would the following statements be valid?

Speaker first = new Dog() ;

Philosopher second = new Philosopher() ;
second.pontificate() ;

first = second;

Quick Check

Would the following statements be valid?

Speaker first = new Dog() ;

Philosopher second = new Philosopher() ;
second.pontificate() ;

first = second;

Yes, all assignments and method calls are
valid as written

